Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105660, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242322

RESUMO

Persistent high-risk HPV infection is closely associated with cervical cancer development, and there is no drug targeting HPV on the market at present, so it is particularly important to understand the interaction mechanism between HPV and the host which may provide the novel strategies for treating HPV diseases. HPV can hijack cell surface heparan sulfate proteoglycans (HSPGs) as primary receptors. However, the secondary entry receptors for HPV remain elusive. We identify myosin-9 (NMHC-IIA) as a host factor that interacts with HPV L1 protein and mediates HPV internalization. Efficient HPV entry required myosin-9 redistribution to the cell surface regulated by HPV-hijacked MEK-MLCK signaling. Myosin-9 maldistribution by ML-7 or ML-9 significantly inhibited HPV pseudoviruses infection in vitro and in vivo. Meanwhile, N-glycans, especially the galactose chains, may act as the decoy receptors for HPV, which can block the interaction of HPV to myosin-9 and influence the way of HPV infection. Taken together, we identify myosin-9 as a novel functional entry receptor for high-risk HPV both in vitro and in vivo, and unravel the new roles of myosin-9 and N-glycans in HPV entry, which provides the possibilities for host targets of antiviral drugs.


Assuntos
Papillomavirus Humano , Infecções por Papillomavirus , Internalização do Vírus , Humanos , Proteínas do Citoesqueleto , Proteoglicanas de Heparan Sulfato/metabolismo , Miosinas , Linhagem Celular , Animais , Cricetinae , Cricetulus , Polissacarídeos/metabolismo
2.
Heliyon ; 9(11): e21695, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027872

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, which is distinguished by the loss of dopaminergic (DA) neurons in the substantia nigra and the formation of intraneuronal. Numerous studies showed that the damage and dysfunction of mitochondria may play key roles in DA neuronal loss. Thus, it is necessary to seek therapeutic measures for PD targeting mitochondrial function and biogenesis. In this study, through screening the purchased compound library, we found that marine derived vidarabine had significant neuroprotective effects against rotenone (ROT) induced SH-SY5Y cell injury. Further studies indicated that vidarabine pretreatment significantly protected ROT-treated SH-SY5Y cells from toxicity by preserving mitochondrial morphology, improving mitochondrial function, and reducing cell apoptosis. Vidarabine also reduced the oxidative stress and increased the expression levels of PGC-1α, NRF1, and TFAM proteins, which was accompanied by the increased mitochondrial biogenesis. However, the neuroprotective effects of vidarabine were counteracted in the presence of SIRT1-specific inhibitor Ex-527. Besides, vidarabine treatment attenuated the weight loss, alleviated the motor deficits and inhibited the neuronal injury in the MPTP induced mouse model. Thus, vidarabine may exert neuroprotective effects via a mechanism involving specific connections between the SIRT1-dependent mitochondrial biogenesis and its antioxidant capacity, suggesting that vidarabine has potential to be developed into a novel therapeutic agent for PD.

3.
Int J Antimicrob Agents ; 62(6): 107000, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838148

RESUMO

OBJECTIVES: Development of novel antiherpes simplex virus (HSV) agents with active mechanisms different from nucleoside analogues is of high importance. Herein, we investigated the anti-HSV activities and mechanisms of wedelolactone (WDL) both in vitro and in vivo. METHODS: Cytopathic effect (CPE) inhibition assay, plaque assay, and western blot assay were used to evaluate the anti-HSV effects of WDL in vitro. The immunofluorescence assay, RT-PCR assay, plaque reduction assay, sandwich ELISA assay, syncytium formation assay, tanscriptome analysis and western blot assay were used to explore the anti-HSV mechanisms of WDL. The murine encephalitis and vaginal models of HSV infection were performed to evaluate the anti-HSV effects of WDL in vivo. RESULTS: WDL possessed inhibitory effects against both HSV-1 and HSV-2 in different cells with low toxicity, superior to the effects of acyclovir. WDL can directly inactivate the HSV particle via destruction of viral envelope and block HSV replication process after virus adsorption, different from the mechanisms of acyclovir. WDL may influence the host genes and signaling pathways related to HSV infection and immune responses. WDL can mainly interfere with the TBK1/IRF3 and SOCS1/STAT3 pathways to reduce HSV infection and inflammatory responses. Importantly, WDL treatment markedly improved mice survival, attenuated inflammatory symptoms, and reduced the virus titres in both HSV-1 and HSV-2 infected mice. CONCLUSIONS: Thus, the natural compound WDL has the potential to be developed into a novel anti-HSV agent targeting both viral envelope and cellular TBK1/IRF3 and SOCS1/STAT3 pathways.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Feminino , Animais , Camundongos , Envelope Viral , Herpes Simples/tratamento farmacológico , Aciclovir/farmacologia , Aciclovir/uso terapêutico , Herpesvirus Humano 2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...